Tianhui Machine Co.,Ltd

Σπίτι> Ιστολόγιο> Maintenance of abnormal machining accuracy of CNC machine tools

Maintenance of abnormal machining accuracy of CNC machine tools

December 24, 2022

System parameters change or modification, mechanical failure, machine tool electrical parameters are not optimized motor operation abnormality, machine position loop abnormality or control logic is not appropriate, is a common cause of abnormal machining accuracy of CNC machine tools in production, find relevant fault points and process The machine can be restored to normal.

In production, it is often encountered that the machining accuracy of CNC machine tools is abnormal. Such faults are highly concealed and difficult to diagnose. There are five main reasons for this type of failure: (1) The machine feed unit has been changed or changed. (2) The zero offset (NULL OFFSET) of each axis of the machine tool is abnormal. (3) The axial backlash (BACKLASH) is abnormal. (4) The motor is in an abnormal state, that is, the electrical and control parts are faulty. (5) Mechanical failure, such as screw, bearing, shaft coupling and other components. In addition, the programming of the machining program, the selection of the tool and the human factors may also lead to abnormal machining accuracy.

1. System parameters change or change

System parameters mainly include machine feed unit, zero offset, backlash and so on. For example, SIEMENS, FANUC numerical control system, its feeding units are metric and imperial. Some processes in the repair process of the machine tool often affect the change of the zero offset and the gap. The fault should be adjusted and modified in time according to the fault; on the other hand, the mechanical measured value may be changed due to serious mechanical wear or loose connection. It is necessary to make corresponding modifications to the parameters to meet the requirements of machine tool machining accuracy.

2. Abnormal machining accuracy caused by mechanical failure

A THM6350 horizontal machining center uses the FANUC 0i-MA CNC system. During the milling of the turbine blades, the Z-axis feed anomaly was suddenly found, resulting in a cutting error of at least 1 mm (Z-direction overcut). The investigation found that the fault was sudden. The machine runs normally in the jog and MDI modes, and the reference point is normal; there is no alarm prompt, and the possibility of hard fault in the electrical control part is excluded. The analysis believes that the following aspects should be checked one by one.

(1) Check the machining program segment that is running when the machine tool accuracy is abnormal, especially the tool length compensation and the machining coordinate system (G54 to G59) for proofreading and calculation.

(2) In the jog mode, the Z-axis is repeatedly moved, and the motion state is diagnosed by visual, touch, and listening. It is found that the Z-direction motion sound is abnormal, especially the fast jog, and the noise is more obvious. Judging from this, there may be hidden dangers in the mechanical aspect.

(3) Check the Z-axis accuracy of the machine tool. The Z-axis is moved by the hand pulse generator. (The hand pulse magnification is set to 1×100, that is, the motor feeds 0.1mm for each step change), and the movement of the Z-axis is observed with the dial indicator. After the one-way motion accuracy remains normal, the forward motion as the starting point, the actual distance of the Z-axis motion of the machine tool is d=d1=d2=d3...=0.1mm, which means that the motor runs well and the positioning accuracy is good. Returning to the actual movement displacement of the machine tool can be divided into four stages: 1 machine tool movement distance d1>d=0.1mm (slope is greater than 1); 2 shows d=0.1mm>d2>d3 (slope is less than 1) 3 machine mechanism does not actually move, showing the most standard backlash; 4 machine movement distance and the hand pulse set value equal (slope equals 1), return to the normal movement of the machine.

Regardless of how the backlash (parameter 1851) is compensated, the characteristic is that, besides the third stage can compensate, the other sections still exist, especially the first stage seriously affects the machining accuracy of the machine tool. In the compensation, it is found that the larger the gap compensation, the larger the moving distance of the first segment.

Analysis of the above inspections suggests that there are several possible reasons: First, the motor has an abnormality; second, there is a mechanical failure; third, there is a certain gap. In order to further diagnose the fault, the motor and the lead screw are completely disengaged, and the motor and the mechanical part are inspected separately. The motor is running normally; in the diagnosis of the mechanical part, it is found that when the screw is moved by hand, the return movement initially has a very obvious feeling of vacancy. Under normal circumstances, the bearings should be able to feel the orderly and smooth movement. After dismantling, it was found that the bearing was damaged and there was a ball falling off. The machine returns to normal after replacement.

3. Machine tool electrical parameters are not optimized for motor operation abnormalities

A CNC vertical milling machine with FANUC 0-MJ CNC system. During the machining process, the X-axis accuracy was found to be abnormal. The inspection found that there was a certain gap in the X-axis and there was instability when the motor started. When the X-axis motor is touched by hand, the motor shake is more serious, and it is not obvious when starting and stopping. It is more obvious in JOG mode.

The analysis believes that there are two reasons for the failure, one is that the mechanical backlash is large; the other is that the X-axis motor is working abnormally. Use the parameter function of the FANUC system to debug the motor. Firstly, the existing gap is compensated; the servo gain parameter and the N pulse suppression function parameter are adjusted, the jitter of the X-axis motor is eliminated, and the machining accuracy of the machine tool returns to normal.

4. Machine position loop abnormality or control logic is not appropriate

A TH61140 boring and milling machine machining center, the CNC system is FANUC 18i, full closed loop control. During the machining process, the Y-axis accuracy of the machine tool was found to be abnormal, the precision error was at least about 0.006 mm, and the maximum error was 1.400 mm. During the inspection, the machine tool has set the G54 workpiece coordinate system as required. In the MDI mode, a program running “G90 G54 Y80 F100; M30;” is run in the G54 coordinate system. The mechanical coordinate value displayed on the display after the standby bed is finished is “-1046.605”, and the value is recorded. Then in the manual mode, the Y axis of the machine tool is jogged to any other position, and the above statement is executed again in the MDI mode. After the standby bed is stopped, it is found that the machine coordinate number of the machine tool is "-1046.992", the same as the first The number of displayed values ​​after the second execution is 0.387 mm. In the same way, the Y axis is jogged to a different position, and the statement is executed repeatedly, and the numerical display value is indefinite. Using the dial indicator to detect the Y-axis, it is found that the actual error of the mechanical position is basically the same as the error displayed by the digital display. Therefore, the cause of the fault is that the Y-axis repeat positioning error is too large. Careful inspection of the backlash and positioning accuracy of the Y-axis and re-compensation have no effect. Therefore, there is a problem with the grating scale and system parameters, but why is there such a large error, but the corresponding alarm information does not appear? Further inspection revealed that the shaft was a vertical axis. When the Y-axis was released, the headstock fell down, causing an out-of-tolerance.

The PLC logic control program of the machine tool has been modified, that is, when the Y-axis is released, the Y-axis is first enabled to be loaded, and then the Y-axis is released; and when clamping, the shaft is first clamped, and then Y is clamped. The axis is enabled to be removed. The machine fault has been resolved after adjustment.

Επικοινωνήστε μαζί μας

Author:

Ms. SU LAN RONG

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗ:

susu@cn-tianhui.com

Phone/WhatsApp:

++86 13396680822

δημοφιλή Προϊόντα
You may also like
Related Categories

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗ σε αυτόν τον προμηθευτή

Θέμα:
ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗ:
μήνυμα:

Your message must be betwwen 20-8000 characters

Επικοινωνήστε μαζί μας

Author:

Ms. SU LAN RONG

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΕΥΘΥΝΣΗ:

susu@cn-tianhui.com

Phone/WhatsApp:

++86 13396680822

δημοφιλή Προϊόντα

Σπίτι

Product

Phone

Σχετικά με εμάς

Έρευνα

We will contact you immediately

Fill in more information so that we can get in touch with you faster

Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.

Αποστολή